Randomness-induced quantum spin liquid behavior in the $s=1/2$ Heisenberg antiferromagnet on the pyrochlore lattice

H. Kawamura and K. Uematsu
Osaka University
Quantum spin liquids now observed in many 2D frustrated magnets

RVB state [P.W. Anderson ('73)]

* Triangular lattice \(S=1/2 \) organic salts

\[
\kappa-(ET)_2Cu_2(CN)_3, \quad \text{EtMe}_3\text{Sb}[\text{Pd(dmit)}_2]_2, \quad \kappa-H_3(\text{Cat-EDT-TTF})_2
\]

[K. Kanoda, R. Kato, H. Mori, et al]

* Kagome lattice

herbersmithite: \(\text{ZnCu}_3(\text{OH})_6\text{Cl}_2 \)

[D.G. Nocera et al]

* Honeycomb-lattice and square-lattice magnets

\[
\begin{align*}
6\text{HB- Ba}_3\text{NiSb}_2\text{O}_9 \quad (s=1) & \\
\text{Sr}_2\text{CuTe}_{1-x}\text{W}_x\text{O}_6 &
\end{align*}
\]

[J. Quilliam et al., 2016]

[O. Mustonen et al., 2018]

Competing interactions
Gapless QSL widely observed experimentally

Triangular organic salt \(\kappa \)-ET
- NMR spectrum
- NMR spectrum

Specific heat
- Specific heat

Kagome herbertsmithite
- \(\text{ZnCu}_2(\text{OH})_6\text{Cl}_2 \)
- \(\text{C/T} \)

Square mixed-crystal AF
- \(\text{Sr}_2\text{CuTe}_{1-x}\text{W}_x\text{O}_6 \)

Specific heat
- Specific heat

\(\mu\text{SR} \)
- \(\mu\text{SR} \)

[S. Yamashita, 2008]
[Y. Shimizu et al., 2003]
[T. H. Han, et al., ’12]
[O. Musutone et al., 2018]
Some (many ?) of experimentally QSL might be randomness-induced ones ?

Randomness (inhomogeneity)

“RVB state”

“random singlet state”

“Anderson localization” of spin singlets ?
Origin of randomness or inhomogeneity could be either extrinsic or intrinsic

Extrinsic randomness
Quenched disorder
- intersite disorder: *kagome herbersmithite*
- mixed crystal: \(\text{Sr}_2\text{CuTe}_{1-x}\text{W}_x\text{O}_6 \)
- defects, impurities ...

Intrinsic randomness
Effective randomness for spin degrees of freedom can be self-generated even in clean systems via the coupling to other degrees of freedom in magnets, e.g., charge, lattices, etc.
- coupling to charge (dielectric) degrees of freedom: \(\kappa\)-ET & dmit salts
- coupling to protons at the hydrogen bond: Cat salt
Extrinsic randomness (quenched randomness)

Kagome herbertsmithite: $\text{ZnCu}_3(\text{OH})_6\text{Cl}_2$

intersite disorder
10~15% Zn^{2+} on the triangular layer randomly replaced by Cu^{2+}

bond-random modulation of the effective exchange J on the kagome plane

Mixed crystal of square-lattice AFMs: $\text{Sr}_2\text{CuTe}_{1-x}\text{W}_x\text{O}_6$

Random $s = 1/2 J_1 - J_2$ square-lattice Heisenberg AF

$\text{Sr}_2\text{CuTeO}_6$ ($J_2/J_1 = 0.03$, $T_N = 29K$)

and Sr_2CuWO_6 ($J_2/J_1 = 7.92$, $T_N = 24K$)

\Rightarrow Significant quenched disorder associated with the Te/W occupation
Relevant randomness (inhomogeneity) exists in triangular organic salts?

Effective randomness is self-generated via the spin-charge coupling.
The “third” quantum spin liquid
κ-$H_3(Cat\text{-}EDT\text{-}TTF)_2$

π-electron - proton coupled triangular organic conductor

hydrogen-bonded

Proton remains delocalized

\rightarrow possibly slowed down into random positions at low-T

\rightarrow yielding random fields to π-electrons

\rightarrow spatially modified random exchange coupling J_{ij}

\rightarrow Gapless random-singlet state
Bond-random $S=1/2$ AF Heisenberg model on the triangular & kagome lattices

$$\mathcal{H} = \sum_{<i,j>} J_{ij} \hat{S}_i \cdot \hat{S}_j$$

$$(0 \leq J(1-\Delta) \leq J_{ij} \leq J(1+\Delta))$$

Δ: randomness parameter $(0 \leq \Delta \leq 1)$

- $\Delta = 0$: no randomness
- $\Delta = 1$: maximal randomness

Exact diagonalization (ED) calculation performed on various 2D models, including triangular, kagome, J_1-J_2 honeycomb and square lattices

\Rightarrow find a QSL-like state (random-singlet state)
ED numerical results on 2D models

Random triangular model

Specific heat

![Specific heat graph for random triangular model](image1)

Susceptibility

![Susceptibility graph for random triangular model](image2)

Random kagome model

Specific heat

![Specific heat graph for random kagome model](image3)

Dynamical spin structure factor

![Dynamical spin structure factor graph for random kagome model](image4)
Randomness-induced QSL state
--- random-singlet state ---
appear to be realized in
a variety of 2D frustrated magnets

Randomness-induced QSL state
ever possible in 3D?

e.g., pyrochlore?
Gapless QSL behavior observed in pyrochlore AF: \(\text{Lu}_2\text{Mo}_2\text{O}_5\text{N}_2 \)

\[
\begin{align*}
\text{Lu}_2\text{Mo}_2\text{O}_7 & \\
\text{Mo}^{4+} & \quad 4d^2 \quad S=1 \quad \rightarrow \quad \text{Orbital degrees of freedom} \\
\text{Apparently disorder-free system} \\
\text{Spin-glass order at } T_f = 16 \text{K} \quad (\text{similarly to } \text{Y}_2\text{Mo}_2\text{O}_7) \\
& \quad \text{due to the spin-orbital coupling}
\end{align*}
\]

\[
\begin{align*}
\text{Lu}_2\text{Mo}_2\text{O}_5\text{N}_2 & \\
\text{Random substitution of } \text{O}^{2-} \text{ by } \text{N}^{3-} \\
\text{Mo}^{5+} & \quad 4d^1 \quad S=1/2
\end{align*}
\]

\(S=1/2 \) pyrochlore Heisenberg AF with significant exchange randomness
QSL behavior of Lu$_2$Mo$_2$O$_5$N$_2$

Gapless QSL behavior with the T–linear specific heat and broad features in the spin structure factor

Specific heat

\[C(\text{mag}) \propto T \]

\[C(\text{mag}) \propto T^2 \]

Susceptibility

Magnetic neutron-scattering cross section

[Clark et al., 2014]
Model: $s = 1/2$ random-bond AF Heisenberg model on the 3D pyrochlore lattice

$$\mathcal{H} = \sum_{\langle i,j \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

- Nearest-neighbor coupling
- Periodic boundary conditions
- ED (ground state properties, $N \leq 36$) & Hams-de Raedt method (finite-temperature properties, $N = 32$)
- Averaged over 10~100 samples

* Preceding works on the regular model
 some sort of non-magnetic state $^{[1-7]}$

- Valence Bond Crystal? $^{[1-4]}$
- Chiral Spin Liquid? $^{[5,6]}$
- something else? $^{[7]}$

Results: Ground state properties

Spin freezing parameter q

No magnetic order at any Δ
Seems to be gapful for $\Delta < \Delta_c \sim 0.6$
but gapless for $\Delta > \Delta_c$
Gapful-gapless transition
at $\Delta = \Delta_c \sim 0.6$

Random singlet state realized
at $\Delta = \Delta_c \sim 0.6$

Spin gap

Rate of triplet ground states
Finite-temperature properties

Specific heat

Susceptibility

Lu$_2$Mo$_2$O$_5$N$_2$ (exp.)

Curie tail
Static spin correlations \((T=0)\)

Static spin structure factor \(S(q)\)

Regular: \(\Delta = 0\)

\((h, h, l)\)

\((h, k, 0)\)

Random: \(\Delta = 1\)

\((h, h, l)\)

\((h, k, 0)\)

Lu\(_2\)Mo\(_2\)O\(_5\)N\(_2\) (exp.)

Very broad spin structure factors without any peaky structure

[L. Clark et al., 2014]
Dynamical spin correlations \((T=0)\)

Dynamical spin structure factor \(S(q, \omega)\)

Regular: \(\Delta = 0\)

\((2, 2, 0)\)

\(\begin{align*}
\mathbf{L} & \quad \mathbf{M} \\
\mathbf{O} & \quad \mathbf{N}
\end{align*}\)

Random: \(\Delta = 1\)

\((2, 2, 0)\)

Lu\(_2\)Mo\(_2\)O\(_5\)N\(_2\) (exp.)

[L. Clark et al., 2014]
Random-singlet state in 3D looks similar to the one in 2D

e.g., specific heat

3D pyrochlore

2D models

- *kagome* [Kawamura et al 2014]
- *J_1-J_2 honeycomb* [Uematsu et al 2017]
- *triangular* [Watanabe et al 2014]
- *J_1-J_2 square* [Uematsu et al poster]
3D Pyrochlore

Gapped (?) QSL Random-singlet

0

$\Delta_c \sim 0.5$

Δ

triangular

[Watanabe et al, 2014]

Neel AF Random singlet

$\Delta_c \sim 0.6$

Δ

kagome

[Kawamura et al, 2014]

QSL Random singlet

$\Delta_c \sim 0.3$

Δ

J_1-J_2 honeycomb

[Uematsu et al, 2017]

Gapped I Gapped II

J_1-J_2 square

[Uematsu et al, poster on Friday]
Summary

* Zero-T and finite-T properties of the bond-random $s=1/2$ AF Heisenberg model

Randomness or inhomogeneity plays a role in quantum magnetism!

* The random-singlet state in 3D is very much similar to the one in 2D, characterized by the T–linear low-T specific heat, gapless susceptibility with a Curie-like tail, and broad features in the spin structure factor.

* The results are consistent with the recent experimental result on the pyrochlore AF Lu$_2$Mo$_2$O$_5$N$_2$ Gapped (?) QSL Random-singlet $\Delta_c\sim0.5$
Possible chiral order?

- **Scalar chirality**
- **Vector chirality**

No chiral (-glass) order both in the regular and the random cases
Origin of the T–linear specific heat in the random-singlet state

T–linear specific heat generically realized in spin glasses and molecular glasses, reflecting continuous low-energy excitations with a nonzero density of states down to zero.

[P.W. Anderson et al, ‘72]
Nature of the “random-singlet” state

Anderson-localized RVB state?

A subtle balance between the kinetic energy (resonance) and the potential energy (random J_{ij})
Gapless behavior robust against $P(J_{ij})$?

Yes.

[Ex.] Discrete (binary) J_{ij} distribution

Gapless behavior for larger randomness (δ) even for the discrete (binary) J_{ij} distribution

[T. Shimokawa et al., '15]